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Abstract: Multi-stage fractured horizontal well technology is an effective development method
for unconventional reservoirs; however, shale oil reservoirs with ultra-low permeability and mi-
cro/nanopore sizes are still not ideal for production and development. Injecting CO2 into the
reservoir, after hydraulic fracturing, gas injection flooding often produces a gas channeling phe-
nomenon, which affects the production of shale oil. In comparison, CO2 huff-n-puff development
has become a superior method in the development of multi-stage fractured horizontal wells in shale
reservoirs. CO2 huff and injection can not only improve shale oil recovery but also store the CO2

generated in industrial production in shale reservoirs, which can reduce greenhouse gas emissions to
a certain extent and achieve carbon capture, utilization, and storage (CCUS). In this paper, the critical
temperature and critical parameters of fluid in shale reservoirs are corrected by the critical point
correction method in this paper, and the influence of reservoir pore radius on fluid phase behavior
and shale oil production is analyzed. According to the shale reservoir applied in isolation to the
actual state of the reservoir and under the condition of a complex network structure, we described the
seepage characteristics of shale oil and gas and CO2 in the reservoir by embedding a discrete fracture
technology structure and fracture network, and we established the numerical model of the CO2

huff-n-huff development of multi-stage fractured horizontal wells for shale oil. We used the actual
production data of the field for historical fitting to verify the validity of the model. On this basis, CO2

huff-n-puff development under different gas injection rates, huff-n-puff cycles, soaking times, and
other factors was simulated; cumulative oil production and CO2 storage were compared; and the
influence of each factor on development and storage was analyzed, which provided theoretical basis
and specific ideas for the optimization of oilfield development modes and the study of CO2 storage.

Keywords: multi-stage fractured horizontal well; CO2 huff-n-puff; shale oil; embedding discrete fracture

1. Introduction

Shale oil reservoirs have very low permeability and fluid flow is difficult, which
poses great challenges to oilfield production. At present, the multi-stage fracturing of
horizontal wells is mostly used in shale reservoirs [1]. In addition, water injection and
gas injection are often used to improve the recovery of shale oil and gas. Due to the
problems of low injection capacity and water swelling of rock, the application of water
injections to enhance oil recovery is not ideal at present [2]. Chengyao Song and Daoyong
Yang performed a series of displacement experiments on core samples from the Bakken
tight formation [3]. The results show that compared with water flooding, CO2 huff-n-
puff can significantly improve recovery, and near miscible CO2 huff-n-puff can achieve
better recovery than immiscible CO2 huff-n-puff [4–6]. Beyond that, in the process of CO2
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injection, gas channeling seriously affects oil displacement efficiency. It is necessary to study
the factors affecting finger channeling and prevent finger channeling [7]. Taking the CO2
injection displacement development in Changqing oilfield in 2013 as an example, CO2 easily
formed gas channels along natural fractures, which greatly reduced the sweep efficiency
and affected the final recovery factor [8]. Weiyu Tang and James J. Sheng conducted a core
gas injection experiment, and the experimental results show that huff-n-puff gas injection
is better than continuous gas injection in enhancing oil recovery when the permeability is
lower than 0.001 mD [9]. The carbon dioxide injection technology serves as a promising
approach for the development of oil and gas fields, enabling the achievement of CCUS
while simultaneously enhancing oil recovery [10]. According to the forecast data from 2020
to 2040, the utilization of CO2 injection and other gas drive methods will exhibit a significant
annual increase. The United States, along with several other countries, has successfully
implemented large-scale field applications of CO2 injection. Similarly, China’s CO2 injection
projects have achieved successful field pilot and extension tests in oilfields [11].

Therefore, a more stable and sustainable circular gas injection method—CO2 huff-n-
puff—is now more widely recognized and favored [12–14]. As shown in Figure 1, as for
shale, the process of CO2 huff-n-puff needs to be completed in a single well, which is mainly
divided into three stages: the injection phase, well shut and soak phase, and the resuming
production phase [15]. Well soaking is a critical step: as the soaking time increases, mass
transfer and molecular diffusion dominate, leading to the penetration of carbon dioxide
into the matrix. When carbon dioxide enters the matrix, the volume of crude oil in the
matrix expands, the viscosity decreases, and the interfacial tension decreases. As the oil
expands, the pressure in the matrix rises, creating a new pressure gradient that allows the
oil in the matrix to be pumped out through microfractures [16].
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In the development of CO2 huff-n-puff EOR, many scholars have proved the effective-
ness of this method through a large number of experimental studies. Wan-fen Pu et al.,
using a true triaxial stress element core fracturing and displacement system combined
with microseismic monitoring, verified the feasibility of CO2 stimulation in a fractured
conglomerate system [17]. After stimulation, the oil recovery is improved, and the EOR is
29.2% of OOIP. Pedram Mahzari et al. developed a new experimental method that saturates
shale cores by soaking them in live oil and then fracking them to simulate the reality of a
reservoir [18]. Based on this, CO2 huff-n-puff experiments were carried out, and finally, for
cores saturated with live oil, CO2 huff-n-puff increased recovery by 48%. Evgeny Shilov
et al. established a 40 cm × 40 cm × 3 cm plate model using CO2 huff-n-puff model
physical simulation experiments of multi-stage fractured horizontal wells in Ordos Basin,
taking outcrop cores of the Chang 8 reservoir as the research object, to study the effect of
CO2 huff-n-puff on enhancing oil recovery in fractured tight reservoirs [19]. The results
showed that the recovery rate increased by 11.13% to 21.39% after three rounds of stimula-
tion compared to depleted development. In the past decade, the numerical simulation of
carbon dioxide stimulation in shale oil reservoirs and tight oil reservoirs has been widely
studied. Scholars used Local Grid Refinement [20] and the embedded discrete fracture
model (EDFM) [21] compositional simulation of CO2 huff-n-puff in Eagle Ford tight oil
reservoirs with CO2 molecular diffusion, nanopore confinement, and complex natural
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fractures. The compositional simulation of the CO2 huff-n-puff process in Middle Bakken
tight oil reservoirs was carried out with hydraulic fractures to build complex fracture
networks [22], and reservoir parameters, engineering parameters, and injection parameters
were adjusted to conduct a sensitivity analysis, so as to optimize the development method.
Yuan Zhang et al. carried out a sensitivity analysis of reservoir physical properties by the
numerical simulation method and found that permeability and the stress sensitivity effect
had a great influence on productivity [23]. The higher the reservoir permeability, the higher
the final recovery efficiency, the stronger the stress sensitivity effect, and the lower the final
recovery efficiency. CO2 injection parameters have also been shown to be an important
factor affecting the recovery efficiency. The injection parameters include CO2 injection rate,
CO2 injection time, CO2 huff-n-puff rounds, etc. The numerical simulation of gas injection
huff-n-puff in Bakken shale [22] shows that the CO2 injection rate is the injection parameter
that has the greatest impact on recovery during CO2 injection.

In addition, for shale reservoirs, the influence of the pore throat on the phase state
should be taken into account. Dew-point pressure, fluid density, viscosity, and other
parameters are quite different from conventional reservoirs. The study of nanoconfined
fluid in shale reservoirs has a short history. Miyahara M and Kanda H used molecular
dynamics methods to study the phase change process of CH4 in nanopores, proposed a
sublimation model of CH4 under the action of nanoconfinement, and successfully corrected
the equation of state parameters during the phase transition process [24]. Dong X et al.
studied the influence of changes in critical properties of confined fluids on gas phase
transition in shale reservoirs. Critical parameters were modified using the Lennard-Jones
dimension parameter to correct the critical parameters of the confined fluid [25].

Based on the above research, it is not difficult to see that the development of shale oil
is of great significance. CO2 injection huff-n-puff to enhance shale oil recovery and CO2 se-
questration technology can give consideration to both economic benefits and environmental
protection. However, the complex seepage mechanism of shale oil reservoir fluid requires
the coupling of the starting pressure gradient and stress-sensitive effect, and the adsorption
and desorption effect of the reservoir gas should also be considered during gas injection.
Moreover, the phase characteristics of confined fluid in the nanopores of shale reservoir are
quite different from the ground conditions, and it is difficult to accurately understand and
characterize the complex fracture network formed by hydraulic fractures in the reservoir.
In current studies, it is difficult to fully characterize the above multi-component seepage
mechanism, and the mathematical model of CO2 injection huff-n-puff of shale oil under a
complex fracture network is not perfect. In addition, there are many factors affecting CO2
injection huff-n-puff, which will affect the final cumulative production and CO2 sequestra-
tion effect. Therefore, it is necessary to conduct multi-factor analysis to study the influence
of each factor on the CO2 injection huff-n-puff development of shale oil. Therefore, it
is necessary to establish a multi-component mathematical model of shale oil huff-n-puff
under complex fracture networks in combination with various seepage mechanisms and
the characteristics of restricted fluid phase states, analyze the influencing factors of CO2
huff-n-puff development on the basis of the model, and apply the conclusions to the target
block of this study. In this study, we considered the nanoconfinement effect of reservoir
fluids and coupled multiple flow mechanisms into the model. We utilized embedded
representations of natural bedding fractures in the Gulong shale oil to more accurately
simulate CO2 adsorption and desorption in shale oil.

2. Methodology

In this section, we briefly describe the correction method for studying the migration
behavior of the hydrocarbon phase by nanopore restriction, the calculation method for
seepage under the threshold pressure gradient, and the calculation method for the stress
sensitivity effect.
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2.1. Critical Property Shift in Nanopores

The critical temperature and pressure of reservoir fluid change under the action of
capillary force, which leads to the corresponding change in the fluid dew point. The
critical point correction method mainly considers the influence of capillary force on fluid
critical point parameters. In 2004, Zarragoicoechea, G.J. et al. derived the critical parameter
migration Equation (1) for confined fluids from the generalized van der Waals equation
combined with the characterization of Lennard-Jones dimension parameters, and compared
with the experimental results, the fitting effect was good [26]. The shift in the critical
pressure and critical temperature at different pore radii can be characterized by using
the critical parameter modification equation based on the thermodynamic method of
Lennard-Jones correlation:

∆T∗
c =

Tcb−Tcp
Tcb

= 0.9409 σLJ
re

− 0.2415
(

σLJ
re

)2

∆P∗
c =

Pcb−Pcp
Pcb

= 0.9409 σLJ
re

− 0.2415
(

σLJ
re

)2

σLJ = 0.244 3
√

Tcb
Pcb

(1)

where Tcb and Tcp are the critical temperature of the bulk and the pore scale, respectively, K;
Pcb and Pcp are the critical pressure of the bulk and pore scale, respectively, atm; σLJ is the
Lennard-Jones dimension parameter, dimensionless; and re is the effective pore radius, nm.

2.2. Low-Velocity Non-Darcy Flow

As an unconventional reservoir, the seepage characteristic of oil and gas in shale
reservoirs is quite different from that of conventional reservoir fluid. Studies have shown
that the permeability of shale reservoirs is extremely low, and fluid flow in porous media
with extremely low permeability belongs to nonlinear seepage with a minimum threshold
pressure gradient [27]. Due to the existence of the threshold pressure gradient, the seepage
law of shale oil in the reservoir deviates from Darcy’s law and has obvious nonlinear
characteristics. As shown in Figure 2, in region 1⃝, the pressure gradient is not enough to
drive fluid flow in the reservoir, and shale oil does not flow in this region. As the pressure
gradient increases slowly beyond the minimum threshold pressure gradient, low-velocity
non-Darcy flow occurs in the reservoir fluid. In region 2⃝, the relationship between the
flow velocity and pressure gradient is a curve. When the pressure gradient increases to a
certain extent, the relationship between seepage velocity and driving pressure becomes a
straight line, but the line no longer passes through the origin. When the line is extended to
intersect the pressure axis, the intercept on the pressure axis is called the pseudo threshold
pressure gradient [28].

When there is a threshold pressure gradient, the seepage motion equation of the fluid
will change. The seepage motion equation of the fluid considering the threshold pressure
gradient is as follows [29]:

v =

{
0, |∇ψ| ≤ G
−KKr

µ (1 − G
|∇ψ| )∇ψ, |∇ψ| > G (2)

where v is the fluid seepage velocity m/s; K is permeability, mD; Kr is relative permeability,
dimensionless; µ is the fluid viscosity, mPa·m; G is the threshold pressure gradient, MPa/m;
and ∆ψ is the pressure gradient, MPa/m. Its values are determined by empirical formulas:

Kr = K0
r (

Sw − Swr

1 − Swr − Sor
)

n
(3)

where K0
r refers to the maximum relative permeabilities for oil phases; Sw is the water

saturation; Swr and Sor are the residual water and oil saturations, respectively; and n is the
fitting parameter.
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2.3. Stress-Sensitive Effect

Shale reservoir bedding is developed. When a weakly consolidated bedding plane is
encountered in the fracturing process, fractures will expand along the bedding plane and
form bedding fractures [30]. In the process of the continuous development of shale oil, the
reservoir pressure gradually decreases, and the overlying pressure on the reservoir rock
gradually increases, resulting in the closure of the middle layer fractures of the reservoir
and the decrease in the permeability of the fractures. Studies have shown that the effect of
stress sensitivity on the permeability of shale reservoirs is much greater than that on the
permeability of general sandstone reservoirs [31]. The stress-sensitive formula in the form
of an index is generally used to correct the permeability of cracks, and the corresponding
relationship is as follows:

K = K0e−β(p0−p) (4)

where K0 is the initial permeability, mD; β is the stress sensitivity coefficient, dimensionless;
and p0 is the original pressure, MPa.

Considering the stress sensitivity effect of fractures in reservoirs, the stress sensitivity
rule is given by the stress sensitivity curve. The relationship between formation pressure
and the permeability multiplier can be calculated according to the stress-sensitive formula
summarized by the core experiment. The stress-sensitive curve of cracks is different from
that of bases. Figure 3 shows the stress-sensitive curve of the shale reservoir in this study.

This section introduces the construction method of the CO2 huff-n-puff model of shale
oil and conducts a sensitivity analysis based on reservoir numerical simulation results, so
as to study the influence of various factors on shale oil production and CO2 storage.
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2.4. Fluid Model

According to the gas chromatographic analysis results of degassed crude oil and total
hydrocarbon of natural gas in well HF1, the content of each component of gas-bearing
crude oil in formation is calculated by referring to the data of the high-pressure physical
property test of crude oil. The high-pressure physical properties of the formation crude
oil were simulated and calculated, then the 40 components were combined into 7 com-
ponents (including 4 pseudo-components), and the relevant parameters of the combined
components were fitted according to the experimental data of the HF1 well, which made
the viscosity of the fluid model close to the experimental value. The content of gas-bearing
crude oil components in well HF1 after splitting and grouping is shown in Table 1.

Table 1. Composition content of oil in formation after composition consolidation.

Component Molar Fraction, % Component Molar Fraction, %

CO2 1.17 C3-C6 13.87
N2 1.62 C7-C15 12.57
C1 49.85 C16+ 7.06
C2 13.86 Total 100

The P–T phase diagram after component division is shown in Figure 4.
In this study, the EOS (Equation of State) selected the PR (Peng–Robinson) equation:

P =
RT

V − b
− a

V(V + b) + b(V − b)
(5)

where R is the gas constant; a is the attraction constant; b is the repulsion constant; and the
numerical values of a and b are both related to the critical parameters of the components.

b = 0.077796
RTc

pc
(6)

a = acα(Tr, ω) (7)

where Tc and Pc are the critical temperature and pressure of the component, respectively; Tr
is the reduced temperature, its value is the ratio of the current temperature T to the critical
temperature Tc; ω is the acentric factor, its magnitude can reflect the molecular shape and
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polarity of the substance, and the acentric factor of the substance can be obtained from a
table; and ac and α can be calculated from Equations (6) and (7), respectively.

ac = 0.457235
R2T2

c
pc

(8)

α0.5 = 1 + (0.37646 + 1.54226ω − 0.26992ω2)(1 − T0.5
r ) (9)

Energies 2024, 17, x FOR PEER REVIEW 7 of 24 
 

 

C1 49.85 C16+ 7.06 
C2 13.86 Total 100 

The P–T phase diagram after component division is shown in Figure 4. 

 
Figure 4. Shale oil composition P–T phase diagram. 

In this study, the EOS (Equation of State) selected the PR (Peng–Robinson) equation: 

( ) ( )
RT aP
V b V V b b V b

= −
− + + −

 
(5)

where R is the gas constant; a is the attraction constant; b is the repulsion constant; and the 
numerical values of a and b are both related to the critical parameters of the components. 

0.077796 c

c

RTb
p

=
 

(6)

( ),c ra a Tα ω=  (7)

where Tc and Pc are the critical temperature and pressure of the component, respectively; 
Tr is the reduced temperature, its value is the ratio of the current temperature T to the 
critical temperature Tc; ω is the acentric factor, its magnitude can reflect the molecular 
shape and polarity of the substance, and the acentric factor of the substance can be ob-
tained from a table; and ac and α can be calculated from Equations (6) and (7), respectively. 

2 2

0.457235 c
c

c

R Ta
p

=
 

(8)

0.5 2 0.51 (0.37646 1.54226 0.26992 )(1 )rTα ω ω= + + − −  (9)

The EOS can calculate key parameters of fluids such as density, volume, compressi-
bility factor, etc. In this model, for viscosity, we utilize the viscosity model proposed by 
Lee and Kesler based on the PR equation [32]: 

Figure 4. Shale oil composition P–T phase diagram.

The EOS can calculate key parameters of fluids such as density, volume, compressibil-
ity factor, etc. In this model, for viscosity, we utilize the viscosity model proposed by Lee
and Kesler based on the PR equation [32]:

ln(µ) = ln(µ0) + ( 1
T − 1

T r)[5.92714 − 6.09648 Tr
ω + 1.28862( Tr

ω )
1/3

−0.169347( Tr
ω )

2/3
+ 0.0196514( Tr

ω )
4/3 − 1.0512]

(10)

where µ is viscosity, mPa·s; and µ0 is the reference viscosity at a reference temperature,
mPa·s.

In this study, the saturation pressure, fluid density, fluid viscosity, and constant
expansion of the reservoir fluid were fitted to modify the EOS parameters to better match the
real fluid conditions of the Gulong shale oil reservoir. Firstly, the saturation pressure (also
known as bubble point pressure) is fitted. Saturation pressure is an important parameter
that affects the phase characteristics of the fluid and is related to the gas–liquid phase
balance of the reservoir fluid. Then, the oil density and oil viscosity were fitted under the
formation condition (32 MPa, 115 ◦C). The fitting results are shown in Table 2.

Table 2. PVT property fitting of formation crude oil.

Parameter Calculated Observed

Saturation pressure, MPa 26.9 23.5

Formation oil viscosity, mPa·s
(32 MPa, 115 ◦C) 0.2 0.2

Formation oil density, kg/m3

(32 MPa, 115 ◦C)
640.4 696.2
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In addition, the constant mass expansion experiment is also carried out to measure
the relationship between the volume and pressure. In this study, the calculated value of
the relative volume under different pressures is fitted with the experimental value of the
relative volume obtained from the constant mass expansion experiment. Figure 5 shows
the fitting result.
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It can be seen from the figure above that the fitting effect of the constant mass expansion
experiment is better, and the error of the relative volume experiment value and the calculated
value is small. Based on the fitting results of saturated pressure, fluid viscosity, fluid density,
and relative volume, it can be seen that the splitting and merging of components and the
setting of pseudo-components are reasonable, which is consistent with the actual situation
of oilfield. The fitting component PVT data are output to provide EOS parameters for the
establishment of the subsequent component model. In addition, in order to meet the real
phase behavior characteristics of the confined fluid in the nanopores of shale reservoirs,
the critical temperature and critical pressure after modification are calculated by the critical
parameter modification method. The correction method for critical parameters is mentioned
in Equation (1). It is worth noting that, according to Equations (5) and (10), changes in the
critical parameters of the fluid will inevitably affect the variations in density and viscosity.
This factor has also been considered in this study. However, the main output parameters of
this paper are the phase diagrams, which provide a more intuitive representation. The critical
parameter pairs before and after modification are shown in Table 3.

Table 3. Comparison of critical parameters of each component before and after modification.

Component Tc
(K)

pc
(atm)

50 nm Tcp
(K)

50 nm pcp
(atm)

40 nm Tcp
(K)

40 nm pcp
(atm)

30 nm Tcp
(K)

30 nm pcp
(atm)

CO2 304.70 72.90 302.45 72.36 301.89 72.23 300.96 72.00
N2 126.20 33.50 125.27 33.25 125.04 33.19 124.65 33.09
C1 190.60 45.44 189.19 45.10 188.84 45.02 188.26 44.88
C2 305.43 48.20 303.18 47.84 302.61 47.76 301.68 47.61

C3-C6 411.05 38.06 408.01 37.78 407.26 37.71 406.00 37.60
C7-C15 635.67 23.28 630.98 23.10 629.80 23.06 627.86 22.99

C16+ 793.83 14.09 787.97 13.99 786.51 13.96 784.08 13.92
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Table 3. Cont.

Component Tc
(K)

pc
(atm)

50 nm Tcp
(K)

50 nm pcp
(atm)

40 nm Tcp
(K)

40 nm pcp
(atm)

30 nm Tcp
(K)

30 nm pcp
(atm)

CO2 304.70 72.90 299.09 71.56 293.55 70.23 282.62 67.62
N2 126.20 33.50 123.88 32.88 121.58 32.27 117.05 31.07
C1 190.60 45.44 187.09 44.60 183.62 43.78 176.79 42.15
C2 305.43 48.20 299.81 47.31 294.25 46.44 283.30 44.71

C3-C6 411.05 38.06 403.48 37.36 396.00 36.67 381.26 35.31
C7-C15 635.67 23.28 623.97 22.85 612.40 22.42 589.60 21.59

C16+ 793.83 14.09 779.23 13.83 764.77 13.58 736.30 13.07

The calculated results show that the critical temperature and pressure change obvi-
ously, and the critical temperature and pressure decrease from 50 nm to 5 nm aperture. In
this calculation, the unit of critical temperature is atm. For convenience of subsequent calcu-
lations, the unit of critical temperature is converted to bar, and then the phase equilibrium
calculation is carried out according to the critical parameters of components, so that the
phase diagram is drawn and compared with the initial components without considering
the special phase state characteristics of the confined fluid. The phase diagram is shown
in Figure 6.
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It can be seen from the phase diagram comparison that the aperture radius has a
certain effect on the phase envelope. The bubble point is the highest and the dew point
is the lowest without considering the influence of nanopores in shale reservoirs. When
considering the influence of nanopores in shale reservoirs, with the pore size decreasing
from 50 nm to 5 nm, the bubble point of components becomes lower and lower, the bubble
point line drops obviously, the dew point of components becomes higher and higher, the
dew point line rises obviously, and the overall phase envelope shrinks inward. Therefore,
the confined fluid effect cannot be ignored in shale reservoirs. In order to better conform to
the real PVT characteristics of the fluid inside the reservoir, the subsequent calculations of
this study took into account the influence of the special phase characteristics of the confined
fluid. In particular, the phase characteristics of the fluid became more complex when the
component content changed after CO2 injection in the later stage.
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2.5. Fracture Model

The embedded discrete fracture model (EDFM) is used to characterize and calculate
hydraulic and natural fractures in reservoirs. The embedded discrete fracture model mainly
uses three kinds of non-adjacent connections (NNCSs) for material exchange. The flow of
mass exchange can be expressed as the product of the conductance between each unit and
the pressure difference:

q = T(p1 − p2) (11)

where q represents the flow rate (m3/s).
In the embedded discrete fracture model, there exist three types of non-neighboring

material exchange modes, each with different conductivities. When multiple fractures
intersect multiple matrix grids, it is necessary to identify the types of NNCSs first.

The three different types of NNC modes are material exchange between fractures
and matrix within the same matrix grid (Type I), material exchange between two different
fractures within the same matrix grid (Type II), and material exchange when the same
fracture penetrates two different matrix grids (Type III). Figure 7 illustrates the schematic
diagrams of the three different types of NNC modes.
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The calculation method of the conductivity Tnnc corresponding to the above three
NNC modes is shown in Table 4.

Table 4. NNC formulation of EDFM model.

NNC Type Tnnc Ti Annc dnnc knnc

I Anncknnc
dnnc

- A f racture
1
V
∫
V

xdV -

II T1T2
T1+T2

knnc Annc
dnnc

lω 1
V
∫
V

xdV kf

III T1T2
T1+T2

knnc Annc
dnnc

lω 1
V
∫
V

xdV kf

According to the embedded discrete fracture calculation method and basic seepage
mechanics theory, the general equation of fluid seepage in shale oil reservoirs in NNC
fractures can be written as follows:

qnnc =
nnnc

∑
m=1

Annc
m · knnc

m kri
µi

ρixi

[
(p − γD)− (p − γD)NNC

m
dnnc

m

]
(12)

where qnnc is NNC seepage flow velocity (kg/s); knnc
m is the harmonic average of all NNC

permeabilities in the matrix, mD; kri is the relative permeability of component i; Annc
m is

the contact area of NNC in the matrix, m3; µi is the viscosity of component i, cp; ρi is the
density of component i, kg/m3; xi is the mole fraction of component i; (p − γD) is the
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pressure at a certain point in the matrix, MPa; and (p − γD)m is the pressure of each NNC
in the matrix, MPa.

2.6. Governing Equation
1⃝ Permeation equation for the matrix system
According to the mass balance equation, flow term added to the source/sink term =

accumulation term, the permeation equation for component i in the oil phase within the
matrix can be written as the following:

∇
[

n

∑
i=1

xm
i

(
ρokmkm

ro
µo

∇pm
o

)]
−

n

∑
i=1

xm
i qm f

o =
∂

∂t
[ϕmSm

o xiρo] (13)

where subscript “o” represents the oil phase; “i” represents component i; “xi” represents
the molar fraction of component i in the oil phase; ρo is the density of the oil phase, kg/m3;
µo is the viscosity of the oil phase, cp; km

ro is the relative permeability of the oil phase in
the matrix; and km is the permeability of the matrix, which has been corrected for stress
sensitivity using the following formula:

km = km
0 e−β(p0−p) (14)

qm f
o represents the fluid flow exchange of the oil phase between the matrix and frac-

tures and can be expressed as the following:

qm f
o = qnnc =

nnnc

∑
m=1

Annc
m · knnc

m kro

µo
ρoxo

[
(po − γoD)− (po − γoD)NNC

m
dnnc

m

]
(15)

Similarly, the gas phase seepage equation for component i in the shale matrix can be
expressed as the following:

∇
[

n

∑
i=1

ym
i

(
ρokmkm

rg

µg
∇pm

g

)]
−

n

∑
i=1

ym
i qm f

g =
∂

∂t

[
ϕmSm

g yiρg + mg

]
(16)

qm f
g = qnnc =

nnnc

∑
m=1

Annc
m ·

knnc
m krg

µg
ρgyg

[(
pg − γgD

)
−
(

pg − γgD
)NNC

m
dnnc

m

]
(17)

where subscript g denotes the gas phase; i denotes component i; yi represents the molar
fraction of component i in the gas phase; ρg is the gas phase density in kg/m3; µg is the gas
phase viscosity in cp; and km

rg is the relative permeability of gas in the matrix. Due to the
need to consider the adsorption and desorption effects of gas in shale reservoirs in this CO2
injection and sequestration model, compared to the seepage equation for the oil phase, the
seepage equation for the gas phase adds an additional adsorption term mg. mg represents
the mass of other desorbed substances in the matrix, expressed as the following:

mg = ρRρgSkVE (18)

where ρR is the density of the hydrocarbon source rock in kg/m3; ρg is the density of the
adsorbed gas in kg/m3; Sk is the volume ratio of the hydrocarbon source rock; and VE is
the volume of adsorbed gas.

As a separate component, without considering any substance exchange with oil and
gas, the seepage equation for the aqueous phase in the shale matrix is the following:

∇
[(

ρokmkm
rw

µw
∇pm

w

)]
− qm f

w =
∂

∂t
[ϕmSm

w ρw] (19)
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qm f
w = qnnc =

nnnc

∑
m=1

Annc
m · knnc

m krw

µw
ρwyw

[
(pw − γwD)− (pw − γwD)NNC

m
dnnc

m

]
(20)

where w denotes the water phase; ρw is the density of the water phase in kg/m3; µw is the
viscosity of the water phase in cp; and krw is the relative permeability of water in the matrix.

2⃝ Permeation equation for the fracture system
Similar to the flow equations in the matrix, the flow equations for the oil phase and

gas phase in the fractures are as follows:

∇
[

n

∑
i=1

xm
i

(
ρok f k f

ro
µo

∇p f
o

)]
+

n

∑
i=1

x f
i qm f

o − qwell
o =

∂

∂t

[
ϕ f S f

o xiρo

]
(21)

∇
[

n

∑
i=1

y f
i

(
ρok f k f

rg

µg
∇p f

g

)]
+

n

∑
i=1

y f
i qm f

g − qwell
g =

∂

∂t

[
ϕ f S f

gyiρg

]
(22)

where qwell
o and qwell

g represent the source/sink terms for mass exchange between the
fracture and wellbore. The mechanism was synthesized within the framework of COMPASS
compositional numerical simulation software.

3. Results
3.1. Reservoir Model

The geological model consists of 100 × 40 × 8 grids, with a total number of 32,000
grids and a horizontal area of 1.6 km2. The top depth of the reservoir is 2300 m, the bottom
depth is 2460 m. The model porosity is 8.40%, and the matrix permeability is 0.0082 mD.
The initial water saturation of the matrix grid is 46%, and the reservoir temperature is
115 ◦C. The target well is a horizontal HF1 well with a 1720 m horizontal section and 32
perforation stages. The reservoir parameters of the mechanism model are shown in Table 5,
and the schematic diagram of the model is shown in Figure 8. The simulation process
is implemented through the COMPASS compositional numerical simulation software,
which can perform three-dimensional display and interactive operations, and has strong
numerical simulation capabilities.

Table 5. Model geological parameters.

Geological Parameters

Model area size (km2) 1.6 Reservoir thickness (m) 160
Number of grids 32,000 Matrix porosity (%) 3.40

Matrix permeability (mD) 0.0082 Reservoir temperature (◦C) 115
Top depth (m) 2300 Matrix water saturation (%) 46

Rock density (kg/m3) 2550 Rock compressibility (MPa−1) 1.45 × 10−5
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where well
oq  and well

gq  represent the source/sink terms for mass exchange between the 
fracture and wellbore. The mechanism was synthesized within the framework of COM-
PASS compositional numerical simulation software. 
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According to the field data of multi-stage fractured horizontal wells in Gulong shale
oil, hydraulic fractures are generated in corresponding perforating stages. The HF1 well has
32 perforating stages, each with seven clusters of fractures. In addition, natural bedding
fractures developed inside the Gulong shale oil reservoir. According to the field data,
8000 natural bedding fractures were generated, all of which were parallel to the formation
plane with a dip angle of 180◦. The parameters of the fracture network are shown in Table 6,
and the schematic diagram of the fracture model is shown in Figure 9, in which the gray
fracture sheet is a natural bedding fracture and the blue fracture sheet is a hydraulic fracture.

Table 6. Fracture system parameters.

Fracture Parameters

Hydraulic fracture half length (m) 120 Hydraulic fracture aperture (m) 0.005
Hydraulic fracture width (m) 50 Natural fracture aperture (m) 0.001

Hydraulic fracture permeability (mD) 10,000 Hydraulic fracture porosity (%) 5
Natural fracture permeability (mD) 100 Natural fracture porosity (%) 5
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3.2. History Matching

HF1 is a multi-stage fractured horizontal well with a fracturing fluid flowback stage
in the initial well opening. Considering the impact of fracturing fluid flowback on oil and
gas production, the state at the end of flowback is set as the initial state of the model in this
historical fitting, and the daily oil production data after the end of flowback are fitted. The
fitting results of the HF1 single well are shown in Figure 10. After historical fitting, the
production data calculated by the numerical model fit well with the actual production data,
which proves that the model is reliable and can be used for the numerical simulation of
CO2 huff-n-puff in a single well of Gulong shale oil.
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3.3. Numerical Case

After the numerical model was established, the above model was used for numerical
simulation of CO2 huff-n-puff, and the preliminary debugging of the model was completed.
After 1800 days of simulated depletion development and two years after depletion devel-
opment, CO2 was injected for one cycle of huff-n-puff, and the development state went
through three stages of gas injection, soaking, and recovery. Figure 11 is the comparison
diagram of oil production and accumulative oil production between well HF1 depletion
development after 1800 days and huff-n-puff development; Figure 12 shows the pressure
variation field during depletion development and CO2 huff-n-puff development.
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It can be seen from the production curve that the cumulative oil production after CO2
huff-n-puff development is 161.41 m3 higher than that in depletion development, and huff-
n-puff development has a certain effect of increasing production. It can be seen from the
pressure variation field diagram that during the CO2 injection huff-n-puff development, the
CO2 injected into the formation supplemented the formation energy after the huff-n-puff,
resulting in a slight rise in the formation pressure. The discrete fracture sheet in the figure is
the natural fracture in the model. By observing the pressure change in the natural fracture
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in the pressure change field diagram of the model, it can be seen that the natural fracture
plays a small role in the diffusion of pressure waves, and only hydraulic fractures and a few
natural fractures around the horizontal well are affected by pressure waves. Subsequent
sensitivity analysis will be based on this model.
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3.4. Threshold Pressure Gradient

The threshold pressure gradient measured in the Gulong shale oil target reservoir
experiment is 0.2 MPa/m. Assuming 1800 days of production and a huff-n-puff on day 720,
the cumulative production and CO2 storage of shale oil with and without the threshold
pressure gradient are compared.

Figure 13 is a comparison diagram of the results with or without the threshold pressure
gradient. It can be seen that with the consideration of the threshold pressure gradient,
shale oil production decreases by about 2% and CO2 storage increases by 0.6%, which
is because the presence of the threshold pressure gradient limits the conduction rate of
pressure waves and reduces the fluid flow rate of the shale oil reservoir. As a result, shale
oil production decreases and CO2 storage increases. It can be seen that the numerical
simulation results may deviate from the real situation if the threshold pressure gradient is
not taken into account.
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3.5. Stress-Sensitive Effect

The relationship between formation pressure and permeability can be analyzed ac-
cording to the stress-sensitive curve in Figure 3. After 1800 days of production with and
without stress sensitivity, a round of CO2 injection was started on the 720th day. The final
cumulative production and CO2 storage results of shale oil were compared.

Figure 14 is a comparison diagram of the results with or without the stress-sensitive
effect. It can be seen that with the stress-sensitive effect taken into account, shale oil
production decreases by about 2% and CO2 storage increases by 1%, because the stress-
sensitive effect will cause the deformation of reservoir pores and fractures in the process of
shale oil development. This reduces the permeability of the matrix and fracture systems,
resulting in lower reservoir fluid production.
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3.6. Nanopore Effect

Five control groups with pore radii of 50 nm, 40 nm, 30 nm, 20 nm, 10 nm, and 5 nm
were set. A round of CO2 injection huff-n-puff production was simulated for the above
models, and the cumulative yield and CO2 storage results were compared. Figure 15 shows
the cumulative production curve of shale oil under different pore radii. It can be seen
from the figure that, as the pore radius decreases, the cumulative oil production increases,
and the smaller the pore radius, the more obvious the increment of oil production. The
comparison does not take into account the special phase characteristics of the confined fluid
in the nanopores and the pore radius of 5 nm, and the accumulated production difference
in 1800 days is 1198.08 m3. Figure 16 shows the cumulative storage curve of CO2 under
different pore radii. It can be seen from the figure that CO2 storage decreases with the
decrease in pore radii. Without considering the special phase characteristics of the confined
fluid in the nanopores, the CO2 storage capacity is the largest, and the CO2 storage capacity
increases by 1836.83 m3 when the pore radius is 5 nm.

The variation in shale oil production and CO2 storage with different pore radii is
related to the bubble point of restricted fluid under different pore radii. Under the condition
of reservoir temperature (388.15 K), the fluid in the Gulong shale oil reservoir is liquid.
As is shown in Figure 17 with the continuous production of reservoir fluid, the formation
pressure keeps decreasing, resulting in the state of reservoir fluid components below the
bubble point line (oil–gas two-phase area). Under the influence of nanopores, the smaller
the pore radius, the lower the bubble point of the confined fluid in the reservoir, that is, the
higher the liquid content in the component. Therefore, in the case of a small pore radius,
the content of liquid fluid in the reservoir is more, and more shale oil is produced. Similarly,
when the pore radius is smaller, the gas content in the reservoir is smaller, and the gas
stored in the reservoir is correspondingly reduced.
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3.7. CO2 Injection Rate

There are many influencing factors in the CO2 injection development of shale oil.
Among them, gas injection parameters are important factors affecting shale oil recovery.
The gas injection parameters are adjustable parameters, and the gas injection system of each
round can be adjusted according to the set scheme in the production process. In the study
of gas injection parameters, the oil change rate is introduced as an evaluation index. The oil
change rate is one of the important indicators for evaluating CO2 huff-n-puff development,
which can be defined as the ratio of increased production to CO2 injection. The calculation
formula is as follows:

Oil change rate (%) =
Oil production with CO2 huff-n-puff(m3) − Oil production with depletion development (m3)

Total volume of CO2 injected (103m3)
(23)

The gas injection rate has the most direct influence on the huff-n-puff effect, and the
simulated output results are different with different daily gas injections. The simulated
production lasted for 2500 days, assuming four cycles of throughput, and the first cycle of
throughput started on the 720th day. The CO2 injection rates were set at 15,000 m3/d, 20,000
m3/d, 25,000 m3/d, and 30,000 m3/d in different control groups. The effects of the gas
injection rate on shale oil production and CO2 sealing stock were analyzed by comparing
the cumulative oil production and CO2 sealing stock in 2500 days under different CO2
injection rates.

Figure 18 shows the comparison curve of cumulative shale oil production and CO2
storage under different injection rates. It can be seen from the figure that with the increase
in the injection rate, cumulative shale oil production increases greatly. Compared with
the injection speed of 25,000 m3 and 20,000 m3, the output is increased by 821.95 m3. It
can be seen that when the injection rate reaches 30,000 m3, the increase in the stimulation
effect begins to decrease, and the higher the gas injection rate, the higher the economic
cost of investment required. Shale oil production cannot be taken as the only indicator of a
development plan. However, Figure 19 shows that when the injection rate is 30,000 m3/d,
the oil change rate is still the highest. In addition, Figure 18 shows that with the increase in
the injection rate, CO2 storage also increases to a certain extent.
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3.8. Soak Time

In this study, the simulated production lasted for 2500 days, the gas injection began
at the 720th day, and the injection time was 30 days. The soak time was set as 10 days,
30 days, 50 days, and 70 days to compare the accumulated production of shale oil and the
CO2 sealing stock under different braising times within 2500 days.

Figure 20 shows cumulative shale oil production and CO2 storage under different soak
time conditions, and Figure 21 shows the comparison of oil change rates under different
soak time conditions. It can be seen from the graph that the cumulative output of shale oil
is higher when the braised well is 70 days, and the impact of the soak time on the output
of shale oil is slight. Compared with that of the soak time for 70 days, the output of shale
oil decreases by only 33.78 m3. In addition, during the simulation period, the cumulative
output of shale oil decreases with the increase in the soak time, which may be because
increasing soak time reduces production time and reduces production in the same period
of time, thus making the increase in shale oil production less noticeable. In addition, with
the increase in the soak time, the CO2 storage increases, because sufficient braising time
will make the CO2 injected into the reservoir fully contact with the reservoir fluid, and
the amount of CO2 dissolution and adsorption will also increase, so the CO2 storage is
improved. Figure 21 shows the oil change rate under different braising times. It can be
seen that the oil change rate also increases slightly with the increase in the braising time.
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3.9. The Cycles of CO2 Huff-n-Puff

The yield increase effect of a single cycle of CO2 injection is limited, and multiple cycles
will be designed in the process of CO2 injection development. In order to study the effect of
huff-n-puff cycles on the improvement in shale oil recovery efficiency by CO2, the simulated
production lasted for 2500 days, and the gas injection began on the 720th day. With other
conditions unchanged, four conditions of huff-n-puff cycles (1, 2, 3, and 4) were simulated
to compare the effects of different huff-n-puff cycles on the cumulative production and CO2
storage of shale oil.

Figure 22 shows the cumulative production and CO2 storage curves of shale oil under
different throughput cycles. As can be seen from the figure, the accumulative production
of shale oil increases significantly with the increase in throughput cycles. Compared with
the throughput round, round shale oil yield increased by 1018.95 m3, and throughput
round CO2 sequestration rose obviously; the reason for this may be associated with the
late production formation energy deficit, and the injection of CO2 will create more storage
within the reservoir. However, as shown in Figure 23, with the increase in CO2 huff-n-puff
rounds, the oil change rate will decrease and the economic benefits will become worse.
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4. Conclusions

Based on reservoir parameters and fracture-related data of the target block, taking
into account the threshold pressure gradient, stress-sensitive effect, and special phase
behavior characteristics of restricted fluid in nanopores, this paper uses the embedded
discrete fractures model to characterize natural stratigraphical fractures and hydraulic
fractures in the reservoir and establishes a CO2 huff-n-huff development model of a multi-
stage fractured horizontal well in shale oil reservoirs. The validity of the model is proved
by historical fitting. Based on the established model, CO2 huff-n-puff production was
simulated, and the effects of the threshold pressure gradient, stress-sensitive effect, and
special phase behavior characteristics of confined fluid in nanopores on shale oil production
and CO2 sequestration were proved. Finally, the numerical simulation method was used to
carry out single-factor analysis to determine the effects of the CO2 injection rate, braising
time, CO2 huffing and puffing cycles on shale oil production, CO2 storage, and the oil
change rate. Through this study, the following conclusions can be drawn:

1. In the Gulong shale oil reservoir, considering the start-up pressure gradient, shale
oil production decreases by about 2% and CO2 storage increases by 0.6%; considering
the stress-sensitive effect, shale oil production decreases by about 2% and CO2 storage
increases by 1%.

2. The critical point correction method can be used to correct the special phase behavior
of confined fluids in shale reservoirs to a certain extent. The modified component phase
diagram is significantly different from that before correction, and the smaller the pore size,
the more obvious the migration. If the special phase behavior characteristics of the confined
fluid are taken into account, the amount of CO2 trapped decreases with the decrease in the
pore radius. Without considering the special phase characteristics of the confined fluid in
the nanopores, the CO2 storage capacity is the largest.

3. Through the optimization analysis of CO2 parameters through numerical simulation,
it can be concluded that CO2 injection speed has the greatest impact on shale oil output at
2500 days of production. Huff-n-puff rounds had the greatest effect on CO2 sealing stock.
However, braising time has little effect on shale oil production, CO2 sealing capacity, and
the oil change rate.
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