
Citation: Zhang, Y.; Dai, H.; Zhang,

H.; Guo, L. Deep-Water Traction

Current in Upper Carboniferous

Stratigraphic Succession of Moscow

Stage, Southeastern Pre-Caspian

Basin. Energies 2024, 17, 1949.

https://doi.org/10.3390/en17081949

Academic Editor: Dameng Liu

Received: 20 December 2023

Revised: 2 April 2024

Accepted: 15 April 2024

Published: 19 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Article

Deep-Water Traction Current in Upper Carboniferous
Stratigraphic Succession of Moscow Stage, Southeastern
Pre-Caspian Basin
Yajun Zhang 1, Hansong Dai 1, Huizhen Zhang 1 and Ling Guo 2,*

1 Research Institute of Petroleum Exploration and Development-Northwest, PetroChina,
Lanzhou 730020, China; zhang_yj@petrochina.com.cn (Y.Z.)

2 State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University,
Xi’an 710069, China

* Correspondence: guoling@nwu.edu.cn

Abstract: Deep-water currents are geographically widespread and represent important tight-oil
and -gas reservoirs. However, identifying deep-water traction current deposits is challenging work.
The main objectives of this research were to identify a new type of reservoir deposited in deep-
water traction currents. Based on high-quality 3D seismic data and drilling data (logging data
and lithology), the sedimentary characteristics of the MKT Formation of the upper Carboniferous
Moscow Stage, southeastern Pre-Caspian Basin, were determined. The MKT Formation of the upper
Carboniferous Moscow Stage is mainly composed of mudstone and some thin-bedded siltstone.
This formation contains a series of “reversal foresets” dipping west (early paleo–high provenance
during the depositional stage). Based on the seismic data and drilling logging data, lithology, paleo-
geographic position, seismic facies, and form and scale, deep-water traction current deposits were
identified in the M block. The discovery of deep-water traction current deposits in the M block not
only provides a precious example for research on Paleozoic deep-water traction current deposits, and
enriches our knowledge of basin sedimentary types, but also proves that the M block had complex
fluid features and unveils a new domain for petroleum exploration in the basin.

Keywords: siliciclastic depositional environment; hydrocarbon reservoirs; reversal foreset; deep-water
traction current; Pre-Caspian Basin

1. Introduction

The MKT Formation in the upper Carboniferous Moscow Stage of the M block contains
substantial mudstone, serving as the primary cap rock for the Carboniferous petroleum
system in the southeastern Pre-Caspian Basin. During deposition, the MKT Formation
consisted of a sequence of “reversal foresets” that dipped westward towards the paleo-
uplift [1]. The absence of a definitive explanation for this sedimentary configuration leads
to significant controversy surrounding the understanding of the overall sedimentary evo-
lution of the Carboniferous System in this region. In the realm of oil and gas exploration,
deep-water mudstone layers are predominantly considered to be either source rock or
cap rock [2–5]. However, studies focusing on their sedimentary configurations are scarce,
and the prevailing consensus suggests their widespread occurrence in sheet-like or hori-
zontally layered formations. The sedimentary history of the upper Carboniferous in the
southeast margin of the Pre-Caspian Basin, particularly within our study area, remains
relatively under-studied.

Pu et al. (2012) found that deep-water mudstone deposited in the distal part of
a pre-delta had a “foreset” configuration [6]. However, this differs from the ‘reversal
foreset’ observed in the MKT Formation. McConnico and Bassett (2007) indicated that
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depositional processes on the foresets along the Conway Coast and presumably all Gilbert-
type fan deltas, New Zealand, were dominated by sediment gravity flows originating
from hyperpycnal river flow and gravity-induced slumps [7]. Research conducted by
Shanmugam (2003) identified deep-marine tidal bottom currents and their reworked sands
in modern and ancient submarine canyons [8], while Wang et al. (2018) detailed the
sedimentological and geological characteristics of the middle Ordovician Yingtaogou
Formation, recognizing it as a mixed turbidite–contourite system situated on the western
margin of the North China Craton [9]. Additionally, Gong et al. (2015) identified bottom-
current reworked sands lacking typical turbidite signatures, suggesting their formation by
bottom currents in the northeastern South China Sea [10].

The “reversal foreset” configuration of fine sediments is common in deep-water
traction current deposits and is a typical mark of such deposits [11]. The present study con-
ducted a comprehensive analysis and juxtaposition of the “reversal foreset” arrangement
found in the MKT Formation against standard deep-water traction current deposits. This
comparison encompassed evaluations across various aspects such as lithology, sedimentary
context, seismic facies, morphology, and scale, among other factors, aimed at discerning
commonalities and elucidating their sedimentary attributes. On this basis, the large-scale
“reversal foreset wedge” at the top of the deep Visean Formation (without well data) was
also examined to speculate its possible genesis.

The primary goal of this research is to provide an overview of the seismic data and
propose a comprehensive sedimentary model for the MKT Formation (upper Carboniferous
Moscow Stage) located in the southeastern margin of the Pre-Caspian Basin. Given that
this formation holds hydrocarbon reserves in various areas, including the Zanarol uplift,
Temel uplift, and southeast depression belt within the southeastern margin of the Pre-
Caspian Basin [12], our proposed sedimentary model aims to aid in identifying potential
reservoir/seal intervals within this region.

The main goal of our investigation is to reconstruct the sedimentary history of our
study area. By conducting a comparative analysis of our sedimentary system reconstruc-
tion with previously published works, through our findings, we aim to contribute to the
comprehension of the paleoenvironment and stratigraphy during the upper Carboniferous
period in the region.

2. Geological Setting

The Pre-Caspian Basin is a large Paleozoic basin located at the junction of the Ear-
asian continent and west of Kazakhstan [13] (Figure 1A). The M block is in the east of
the Astrakhan–Aktobe uplift zone in the southeastern region of the Pre-Caspian Basin
(Figure 1B). During the late Devonian to the early Carboniferous, the Pre-Caspian Basin
served as the passive margin of the East European craton [14]. Subsequently, from the early
Carboniferous to early Permian, it transformed into a significant equatorial sag basin due
to the collision between the Kazakhstan and East European plates. This evolution led to
the formation of a deep-water central depression and uplifted fold belts along the southern
and eastern margins [15]. In the late Carboniferous, two distinct lithofacies were deposited:
organic-rich shales within the intra-shelf basin of the central Pre-Caspian depression and
shallow marine carbonates on the structural highs of the Astrakhan–Aktobe uplift zone at
the southeastern margin (Figure 1B) [14].

The Zanarol uplift, predominantly a carbonate ramp during the late Cisean–Gzhelian
stage [16], was situated on the Astrakhan–Aktobe uplift zone in the southeastern margin of
Pre-Caspian Basin (Figure 1B). Within the Zanarol uplift, the carbonate reservoir of the M
block is stratigraphically divided into two formations, KT-II (lower Moscovian) and KT-I
(upper Moscovian), separated by the middle Moscovian terrigenous interval known as the
MKT Formation, corresponding to a significant transgression event (Figure 2) [14].

The MKT Formation represents deeper-water deposits found within the deep-water
shelf-slope facies that formed during the middle Moscovian period of the late Carboniferous
(Figure 2). This formation predominantly consists of shale [17] and is composed of thick
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mudstone interbedding with thin fine-silty sandstone, limestone, and some sandstone
(Figure 2). Based on statistics, the MKT Formation comprises approximately 60–95%
mudstone content, averaging around 78%. Vertically, the MKT Formation exhibits abrupt
contact at its base with the KT-II limestone, while its upper boundary transitions more
gradually into the KT-I limestone, featuring a series of transitional facies deposits spanning
20–50 m in thickness. Spanning approximately 2500 km2, this formation displays a thinning
trend from east to west, presenting as a slope belt that is higher in the east and gradually
descends towards the west across the region (Figure 1B). Based on regional data, it is
indicated that during the Moscovian period of the late Carboniferous, the southeastern
margin of this basin underwent a transition from a passive continental margin to a back-arc
basin. The paleo-landform demonstrated a higher elevation in the western region and a
lower elevation in the eastern area during this period. The significant Ural orogeny at the
end of the Permian resulted in considerable tectonic uplift and inversion, specifically on the
eastern side of the basin [18–21]. Hence, the westward-dipping “foreset layers” observed
within the MKT Formation contradict the late Carboniferous paleo-tectonic direction and
characterize a typical “reversal foreset” configuration.
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Figure 2. Stratigraphic column of Carboniferous at Zanarol uplift in Pre-Caspian Basin [23] with
global sea-level curve proposed by [14,24].

3. Materials and Methods

The data used in this study were obtained from PetroChina. The well data include
wire-line logs (conventional raw data, gamma ray, resistivity, neutron, and density mea-
surements). Additionally, supplementary materials such as lithology profiles and seismic
profiles from other typical deep-water traction current deposits were acquired from previ-
ously published literature.

The study methodology primarily involved deducing seismic correlations and in-
terpreting seismic sections to conduct a sedimentary system analysis. The seismic data
analyses included reflector picking, reflector identification, and their correlation; closing
loops; fault location; isochronous, constructing cross-sections; and structural contour maps.
The flattened surface is the top of the Visean, where this surface is characterized by marked
changes in petrophysical properties. Some traced reflectors were selected to show the
structural pattern and stratigraphic characteristics in the area.

This approach relied on comparing the MKT Formation in the M-block of the south-
eastern Pre-Caspian Basin with typical deep-water traction current deposits from various
aspects. Firstly, single-well sedimentary facies were analyzed in terms of the paleogeogra-
phy, water setting, and lithological features to initially assess the depositional environment
of the MKT formation. Subsequently, seismic interpretation was employed to elucidate the
structural morphology, distribution characteristics, and scale of seismic facies within the
MKT formation. Lastly, the depositional mechanism of the MKT formation was analyzed,
and a deep-water traction current model was established for the MKT formation in the
M block.
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4. Results
4.1. Sedimentary Characteristics of MKT Formation

The MKT Formation within the M block primarily comprises gray and black shale,
along with interbedded thin-bedded siltstone, muddy siltstone, and limestone. The black
and gray shale layers, spanning from 150 to 450 m, are predominantly deposited in deep-
water shelf environments (Figure 3). Notably, thin-layered siltstone with thicknesses from
1 m to 5 m, exhibiting a finger-shaped gamma-ray (GR) logging curve, is interpreted as
being indicative of contour current activity. They are interbedded with gray, dark-gray,
and black shale deposited in the deep-water shelf. In the continuous well section, the deep
gray shale is distributed in thick layers and extends extensively laterally. Contour currents
are primarily distributed in a lens-shaped formation, with a limited lateral extent and thin
thickness (Figure 4).
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4.2. Characteristics of MKT Formation in 3D Seismic Profile

The thickness of the MKT Formation exhibits a trend of increasing thickness towards
the southeast and manifests a distinctive “reversal foreset” configuration in the 3D seismic
profiles within the study area (Figure 5). The strata primarily consist of shale, interspersed
with layers of siltstone, as illustrated in Figure 3. Notably, there is no observable correlation
between the “reversal foreset” configuration and lithology in deep-water traction current
deposits. The “foresets” within the interval wave were found to be uniformly distributed
across mudstone and clastic rock intervals in the middle–upper Ordovician [18]. The “rever-
sal foresets” observed in the MKT Formation exhibit similar characteristics. The cross-well
sections illustrate the presence of “foresets” in both mudstone and non-mudstone sections
(Figure 6A). Additionally, the “reversal foreset” displays significant lateral variation in
seismic facies characteristics, suggesting considerable lithological instability (Figure 6B,C).
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The internal distribution of strata within deep-water traction current deposits is
typically parallel to the tectonic line, primarily influenced by the nature of the water body.
For instance, examples such as the “reversal foresets” found in bathymetric lithoherms in
Canterbury, New Zealand, the internal wave deposits in the middle–upper Ordovician
period in the Tazhong area, and the bathymetric lithoherms in the Miocene period in Finney,
Ireland, all exhibit alignment parallel to the tectonic line within the slope zone [18,25–27].
The NE-SW striking orientation of the “reversal foresets” within the MKT Formation aligns
with the structural trend observed in the study area, as depicted in Figure 6. The analysis
of the drilling lithology indicates that the distribution of these “reversal foresets” shows no
direct correlation with the lithological content across the area. However, it is notable that
zones with elevated clastic rock and limestone content in the drilling data also exhibit a
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predominant NE-SW strike (Figure 6). Consequently, the seismic facies characteristics of the
MKT Formation demonstrate similarities with those of deep-water traction current deposits.

The MKT Formation is observed to be an element of a northeast-oriented strip mound
deposition (Figure 6), bearing a striking resemblance to the depositional body associated
with deep-water traction currents, showcasing a landward migration feature [18,25–27]. On
the northwest-strike section, this formation presents a semi-mound shape with a shorter
extension, revealing an interior configuration of westward-dipping “reversal foresets”
(Figure 6A,B). Conversely, in the northeast-strike section, it adopts a semi-mound shape
with a longer extension, displaying a thickness decrease from north (the thickest part) to
south. Moreover, the inner strata exhibit a gradual transition from a nearly horizontal
reflection to a slow downdip convergence (Figure 6C).

The deep-water traction currents of the MKT Formation, influenced by the formation’s
substantial scale, and even global variations in sea water temperature, salinity, and density,
typically operate over broader ranges and frequently generate larger-scale depositional
bodies. For instance, the modern contourite mounds found around the North Atlantic
Ocean extend over considerable distances, spanning hundreds of kilometers in length and
tens of kilometers in width. In various locations, such as the South China Sea and the
Mozambique Basin in the Indian Ocean, deposits related to deep-water traction currents
frequently span areas ranging from tens to hundreds of square kilometers [27,28]. Hence,
the scale of the MKT Formation bears similarities to that of deposits associated with deep-
water traction currents.

Overall, the MKT Formation deposit aligns with the characteristics of deep-water
traction current deposits in terms of lithology, form, scale, and seismic facies. Furthermore,
the “reversal foreset” configuration, resulting from the inward migration of sediments
under the influence of deep-water traction currents, stands out as a distinctive sedimentary
feature and serves as a key marker for identifying such deposits.

5. Discussion
5.1. Sedimentary Environment

A contour current refers to consistent and stable water circulation aligned with the
ocean’s isobaths, resulting from the Earth’s rotation and variations in temperature and
salinity within the seawater [29–31]. Geologists have discovered numerous ancient deep-
water traction current deposits in exposed rock formations since the 1960s [11,29,32–35].
In the past decade, advancements in marine scientific research have led to the successive
discovery of numerous modern deep-water traction current deposits both domestically and
internationally. Previous research has highlighted the prevalence of the “reversal foreset”
configuration in fine sediments, identifying it as a distinctive and widespread sedimentary
characteristic of deep-water traction current deposits [36–40].

Deep-water traction current deposits are primarily found in shelf, slope, and oceanic
basin regions characterized by considerable water depth. Due to their considerable distance
from the source area, these deposits typically consist of mudstone with intermittent layers
of thin siltstone and sandstone [36,37]. The MKT Formation, aligning with these deep-water
traction currents, comprises extensive layers of dark-gray mudstone interspersed with
occasional thin fine siltstone and limestone strata, with an average mudstone content of
approximately 78%.

Due to their comparable lithology, form, scale, sedimentary environment, sequence,
and contact relationships, differentiating contour current deposits relies on subtle features
like bedding type, biological disturbance characteristics, and trace and microfossil details.
Utilizing 3D seismic data and drilling well information, this study compares the MKT
Formation, identified as a deep-water traction current deposit, with conventional deep-
water traction current deposits from various macroscopic aspects (Table 1).
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Table 1. Macroscopic feature comparison of MKT Formation and deep-water traction current deposits.

Lithology Geographic
Setting Water Setting Seismic Facies Foreset

Distribution Configuration Scale

MKT Fm.

Mudstone and
small amount
of sandstone

and limestone

Shelf slope

Fast water
intrusion,

deeper water
body

Lithology is
not related to

reversal foreset

Parallel to shelf
slope

(tectonic line)

In incomplete
mound shape

(limited by
data)

2500 km2

Deep-water
traction

current deposit

Terrestrial
clastic rock and
carbonate rock,

but mostly
mudstone

Shelf, slope,
and deep basin

Deeper water
body

Lithology is
not related to

reversal foreset

Generally
parallel to
slope and

basin margin
(tectonic line)

In sheet or
mound forms Up to 3000 km2

The sedimentary conditions and environments of the MKT Formation coincide sig-
nificantly with those of deep-water traction currents. Generally, these deposits tend to
develop during periods of substantial regional water depth increase, resulting in a weak-
ened gravity flow effect. In the case of the MKT Formation, the presence of well-developed
deep-water mudstone, and the abrupt contact of its bottom with the thick limestone of
KT-II (Figures 2 and 3), suggests a rapid subsidence process in the southeastern margin
of the basin during the formation’s sedimentary period. This environmental shift, tran-
sitioning from the high-energy, shallow-water setting of the open platform during the
early stage (KT-II) to deeper-water conditions, persisted throughout the deposition of the
MKT Formation.

Deep-water traction current deposits are frequently observed in deep-water shelves,
slopes, and deep ocean basins, with extensive occurrences predominantly found in the
zones of deep-water shelves and slopes [31]. The deep-water traction current deposits
within our study area typically feature varying quantities of thin fine sandstone and
siltstone interlayers embedded within thick mudstone [41].

During the late Carboniferous Moscovian period, frequent collisions occurred between
the East Europe Craton and the Kazakhstan plate, initiating the closure of the Ural Ocean.
Consequently, the southeastern margin of the basin underwent a transition from a passive
continental margin to a back-arc basin. The sedimentary environment was characterized by
alternating neritic platform and shelf-slope settings in the M block. During the deposition
of the MKT Formation in the middle Moscovian period, the southeastern part of the basin
experienced significant subsidence, resulting in rapid deepening of the water body. This
led to the contraction of the platform facies and the expansion of the continental slope facies
toward the east and south of the Zanarol uplift zone [6–10,42]. The persistent extension
of the slope zone, coupled with deeper-water conditions and a relatively lower-energy
environment isolated from shallow waters, emphasized the prominence of deep-water
traction currents as the primary agent governing sedimentation.

5.2. “Reversal Foreset Layer” in Sergipe Basin in Brazil

The MKT Formation in the M block was mainly deposited in the deep-water shelf.
Morphologically, the “reversal foreset wedge” observed in the MKT Formation closely
resembles the continental slope found in the Sergipe Basin in Brazil [43–46] (Figure 7).
The structure comprises three west-dipping wedges, reaching thicknesses of up to 1400 m,
extending laterally by 15–20 km, and covering an area of 200–400 km2 each. The “reversal
foreset wedge” exhibits a low-frequency, a weak–medium amplitude, and poor chaotic
continuity in the seismic section. Thus, it is inferred that it shares lithological similarities
with the MKT Formation, primarily comprising deep-water mudstone, albeit with a more
significant presence of clastic and limestone thin beds compared to the MKT Formation.
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5.3. Forming Mechanism of “Reversal Foreset”

Deep-water traction current deposits result from the reworking and redeposition of
loose sediments from earlier or concurrent periods. While contour currents can generate a
“reversal foreset” configuration in sediments, they do so through distinct mechanisms.

The formation of a “reversal foreset” in contour current deposits occurs when the
rotational flow of a contour current, influenced by the Coriolis force, disturbs and elevates
sediments along the continental slope, creating a “nepheloid layer” mainly composed
of fine clay particles. This layer drifts across the sea water density surface toward the
oceanic basin side (Figure 8(A-1)). As the “nepheloid layer” gathers an abundance of clay
particles, owing to intense suspension and a low deposition rate, these particles travel
considerable distances along the density surface towards the basin, forming extensive and
flat sheet mudstone deposits. However, if the “nepheloid layer” contains denser grains,
like fine-silty sand or limy particles, its suspension ability decreases, leading to a notable
rise in the overall sedimentation rate and reduced lateral drift along the density surface.
When the water body deepens and the contour current moves towards the land, a new
“nepheloid layer” with a swifter deposition rate emerges, drifting over shorter distances and
struggling to cover the earlier “nepheloid layer” accumulation completely. Consequently,
its sediments predominantly overlay the landward side of the prior “nepheloid layer”
accumulation, generating a sequence of landward-migrating “reversal foreset” layers
(wedges) (Figure 8(A-2)).

The “reversal foreset” configuration is formed when the body of water deepens, and a
contour current is established. In this process, the high-density water layer near the bottom
of the deposit on the shelf’s slope belt generates internal waves that create a bottom current
moving from deeper water to shallower water. These bottom current influences loose
sediment, shaping a sedimentary bottom akin to the internal wave, and migrates upward
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along the slope, resulting in the establishment of the “reversal foreset” configuration [47]
(Figure 8(B-1)–(B-4)).
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Figure 8. Forming mechanisms of “reversal foresets” in deep-water traction current deposits. (A) Sed-
imentary progress of contourite, modified from reference [48]; (A-1): The deep-sea current is a stable
circulation formed by the rotation of the Earth and differences in temperature and salinity of seawater.
Its landward migration manifests as the formation of spiral flow under the Coriolis effect, which
erodes and lifts loose sediments on the landward side to form a misty layer. (A-2): During the drifting
process along different seawater density layers towards the ocean basin side, gradual sedimentation
occurs. When there are small amounts of larger particles such as fine silt in the misty layer, the
distance of drift decreases, accelerating the overall sedimentation rate and forming a series of “reverse
foresets” migrating towards the land. (B) sedimentary progress of internal wave, modified from
reference [43]. (B-1): Sedimentary bedforms migrate landward, resulting in a series of “reverse
foresets”. (B-2–B-4): The bottom current induced by internal waves is opposite to their propagation
direction (internal waves typically propagate from shallow water to deep water), causing loose
sediments to form sedimentary bedforms of comparable scale to the internal wave morphology
without suspension occurring, and gradually migrating landward. This process results in a series of
“reverse foresets”.
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As deep currents exhibit a high degree of consistency in their development environ-
ment and conditions [3], their associated sediments often display striking similarities in
form and scale. Distinguishing between these deposits primarily relies on more intricate
sedimentary data like cores, thin sections, and fossils. Additionally, within the realm of the
large-scale development of deep-water traction current sediments, the relationship between
internal waves and contour currents remains a matter of debate in academia. Consequently,
this study can assert that the upper sections of the MKT are deep-water traction current
deposits; however, more detailed refinement of this determination necessitates further
information in subsequent research.

6. Conclusions

(1) The MKT Formation primarily consists of shale with interbedded thin siltstone
layers. These thin siltstone beds represent deposits formed by deep-water traction currents.
The identification of Carboniferous deep-water traction current deposits within this study
area presents a valuable non-outcropping example from the deep Paleozoic period, holding
significant academic research value.

(2) The identification of deep-water traction current deposits adds to the sedimentary
diversity within the Pre-Caspian Basin. Additionally, it validates the notion that the
southeastern margin of the basin experienced varied water dynamics during the Paleozoic,
suggesting that gravity flow might not have been the dominant factor governing subsidence
throughout specific periods.

(3) Deep-water traction currents significantly influence sediment restructuring and
play a crucial role in oil and gas exploration. The early accumulation of fine sandstone and
siltstone in slope zones often creates promising reservoirs following their restructuring.
The thick layers of mudstones within deep-water traction current deposits not only serve
as favorable source rocks, but also act as seals for the restructured reservoirs. Consequently,
areas characterized by siltstone or sandstone deposition during the initial stages followed
by the development of deep-water traction current deposits are highly desirable zones for
exploring deep-water lithologic reservoirs in the Pre-Caspian Basin.
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